On linear differential-algebraic equations and linearizations
نویسندگان
چکیده
منابع مشابه
On linear di erential-algebraic equations and linearizations
On the background of a careful analysis of linear DAEs, linearizations of nonlinear index2 systems are considered. Finding appropriate function spaces and their topologies allows to apply the standard Implicit Function Theorem again. Both, solvability statements as well as the local convergence of the Newton-Kantorovich method (quasilinearization) result immediately. In particular, this applies...
متن کاملOn parameter and state estimation for linear differential-algebraic equations
The current demand for more complex models has initiated a shift away from state-space models towards models described by differential-algebraic equations (DAEs). These models arise as the natural product of object-oriented modeling languages, such as Modelica. However, the mathematics of DAEs is somewhat more involved than the standard state-space theory. The aim of this work is to present a w...
متن کاملLinear Differential Algebraic Equations with Constant Coefficients
Differential-algebraic equations (DAEs) arise in a variety of applications. Their analysis and numerical treatment, therefore, plays an important role in modern mathematics. The paper gives an introduction to the topics of DAEs. Examples of DAEs are considered showing their importance for practical problems. Some essential concepts that are really essential for understanding the DAE systems are...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
On stability of time-varying linear differential-algebraic equations
We develop a stability theory for time-varying linear differential algebraic equations (DAEs). Well-known stability concepts of ordinary differential equations are generalised to DAEs and characterised. Lyapunov’s direct method is derived as well as the converse of the stability theorems. Stronger results are achieved for DAEs, which are transferable into standard canonical form; in this case t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Numerical Mathematics
سال: 1995
ISSN: 0168-9274
DOI: 10.1016/0168-9274(95)00058-3